[desktop] ML touchups (#1777)
This commit is contained in:
commit
41b22abc66
12 changed files with 98 additions and 64 deletions
|
@ -14,7 +14,7 @@
|
|||
"build:ci": "yarn build-renderer && tsc",
|
||||
"build:quick": "yarn build-renderer && yarn build-main:quick",
|
||||
"dev": "concurrently --kill-others --success first --names 'main,rndr' \"yarn dev-main\" \"yarn dev-renderer\"",
|
||||
"dev-main": "tsc && electron app/main.js",
|
||||
"dev-main": "tsc && electron .",
|
||||
"dev-renderer": "cd ../web && yarn install && yarn dev:photos",
|
||||
"postinstall": "electron-builder install-app-deps",
|
||||
"lint": "yarn prettier --check --log-level warn . && eslint --ext .ts src && yarn tsc",
|
||||
|
|
|
@ -163,7 +163,7 @@ const checkForUpdatesAndNotify = async (mainWindow: BrowserWindow) => {
|
|||
};
|
||||
|
||||
/**
|
||||
* Return the version of the desktop app
|
||||
* Return the version of the desktop app.
|
||||
*
|
||||
* The return value is of the form `v1.2.3`.
|
||||
*/
|
||||
|
|
|
@ -88,7 +88,8 @@ const fetchOrCreateImageBitmap = async (
|
|||
|
||||
const indexFaces_ = async (enteFile: EnteFile, imageBitmap: ImageBitmap) => {
|
||||
const fileID = enteFile.id;
|
||||
const imageDimensions: Dimensions = imageBitmap;
|
||||
const { width, height } = imageBitmap;
|
||||
const imageDimensions = { width, height };
|
||||
const mlFile: MlFileData = {
|
||||
fileId: fileID,
|
||||
mlVersion: defaultMLVersion,
|
||||
|
@ -126,8 +127,6 @@ const indexFaces_ = async (enteFile: EnteFile, imageBitmap: ImageBitmap) => {
|
|||
const embeddings = await computeEmbeddings(alignedFacesData);
|
||||
mlFile.faces.forEach((f, i) => (f.embedding = embeddings[i]));
|
||||
|
||||
// TODO-ML: Skip if somehow already relative. But why would it be?
|
||||
// if (face.detection.box.x + face.detection.box.width < 2) continue;
|
||||
mlFile.faces.forEach((face) => {
|
||||
face.detection = relativeDetection(face.detection, imageDimensions);
|
||||
});
|
||||
|
@ -157,11 +156,6 @@ const detectFaces = async (
|
|||
rect(imageBitmap),
|
||||
);
|
||||
|
||||
// TODO-ML: reenable faces filtering based on width ?? else remove me
|
||||
// ?.filter((f) =>
|
||||
// f.box.width > syncContext.config.faceDetection.minFaceSize
|
||||
// );
|
||||
|
||||
const maxFaceDistancePercent = Math.sqrt(2) / 100;
|
||||
const maxFaceDistance = imageBitmap.width * maxFaceDistancePercent;
|
||||
return removeDuplicateDetections(faceDetections, maxFaceDistance);
|
||||
|
@ -320,8 +314,8 @@ const removeDuplicateDetections = (
|
|||
|
||||
const faceDetectionCenter = (detection: FaceDetection) => {
|
||||
const center = new Point(0, 0);
|
||||
// TODO-ML: first 4 landmarks is applicable to blazeface only this needs to
|
||||
// consider eyes, nose and mouth landmarks to take center
|
||||
// TODO-ML(LAURENS): first 4 landmarks is applicable to blazeface only this
|
||||
// needs to consider eyes, nose and mouth landmarks to take center
|
||||
detection.landmarks?.slice(0, 4).forEach((p) => {
|
||||
center.x += p.x;
|
||||
center.y += p.y;
|
||||
|
@ -354,11 +348,14 @@ const makeFaceID = (
|
|||
const faceAlignment = (faceDetection: FaceDetection): FaceAlignment =>
|
||||
faceAlignmentUsingSimilarityTransform(
|
||||
faceDetection,
|
||||
normalizeLandmarks(arcFaceLandmarks, mobileFaceNetFaceSize),
|
||||
normalizeLandmarks(idealMobileFaceNetLandmarks, mobileFaceNetFaceSize),
|
||||
);
|
||||
|
||||
// TODO-ML: Rename?
|
||||
const arcFaceLandmarks: [number, number][] = [
|
||||
/**
|
||||
* The ideal location of the landmarks (eye etc) that the MobileFaceNet
|
||||
* embedding model expects.
|
||||
*/
|
||||
const idealMobileFaceNetLandmarks: [number, number][] = [
|
||||
[38.2946, 51.6963],
|
||||
[73.5318, 51.5014],
|
||||
[56.0252, 71.7366],
|
||||
|
@ -681,21 +678,18 @@ const extractFaceCrop = (
|
|||
imageBitmap: ImageBitmap,
|
||||
alignment: FaceAlignment,
|
||||
): ImageBitmap => {
|
||||
// TODO-ML: Do we need to round twice?
|
||||
const alignmentBox = roundBox(
|
||||
new Box({
|
||||
x: alignment.center.x - alignment.size / 2,
|
||||
y: alignment.center.y - alignment.size / 2,
|
||||
width: alignment.size,
|
||||
height: alignment.size,
|
||||
}),
|
||||
);
|
||||
const alignmentBox = new Box({
|
||||
x: alignment.center.x - alignment.size / 2,
|
||||
y: alignment.center.y - alignment.size / 2,
|
||||
width: alignment.size,
|
||||
height: alignment.size,
|
||||
});
|
||||
|
||||
const padding = 0.25;
|
||||
const scaleForPadding = 1 + padding * 2;
|
||||
const paddedBox = roundBox(enlargeBox(alignmentBox, scaleForPadding));
|
||||
|
||||
// TODO-ML: The rotation doesn't seem to be used? it's set to 0.
|
||||
// TODO-ML(LAURENS): The rotation doesn't seem to be used? it's set to 0.
|
||||
return cropWithRotation(imageBitmap, paddedBox, 0, 256);
|
||||
};
|
||||
|
||||
|
|
|
@ -12,15 +12,16 @@ export class DedicatedMLWorker {
|
|||
public async syncLocalFile(
|
||||
token: string,
|
||||
userID: number,
|
||||
userAgent: string,
|
||||
enteFile: EnteFile,
|
||||
localFile: globalThis.File,
|
||||
) {
|
||||
mlService.syncLocalFile(token, userID, enteFile, localFile);
|
||||
mlService.syncLocalFile(token, userID, userAgent, enteFile, localFile);
|
||||
}
|
||||
|
||||
public async sync(token: string, userID: number) {
|
||||
public async sync(token: string, userID: number, userAgent: string) {
|
||||
await downloadManager.init(APPS.PHOTOS, { token });
|
||||
return mlService.sync(token, userID);
|
||||
return mlService.sync(token, userID, userAgent);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -24,7 +24,6 @@ export const syncPeopleIndex = async () => {
|
|||
public async syncIndex(syncContext: MLSyncContext) {
|
||||
await this.getMLLibraryData(syncContext);
|
||||
|
||||
// TODO-ML(MR): Ensure this doesn't run until fixed.
|
||||
await syncPeopleIndex(syncContext);
|
||||
|
||||
await this.persistMLLibraryData(syncContext);
|
||||
|
|
|
@ -8,8 +8,9 @@ import type { Face, FaceDetection, MlFileData } from "./types";
|
|||
export const putFaceEmbedding = async (
|
||||
enteFile: EnteFile,
|
||||
mlFileData: MlFileData,
|
||||
userAgent: string,
|
||||
) => {
|
||||
const serverMl = LocalFileMlDataToServerFileMl(mlFileData);
|
||||
const serverMl = LocalFileMlDataToServerFileMl(mlFileData, userAgent);
|
||||
log.debug(() => ({ t: "Local ML file data", mlFileData }));
|
||||
log.debug(() => ({
|
||||
t: "Uploaded ML file data",
|
||||
|
@ -57,34 +58,31 @@ class ServerFileMl {
|
|||
class ServerFaceEmbeddings {
|
||||
public faces: ServerFace[];
|
||||
public version: number;
|
||||
/* TODO
|
||||
public client?: string;
|
||||
public error?: boolean;
|
||||
*/
|
||||
public client: string;
|
||||
|
||||
public constructor(faces: ServerFace[], version: number) {
|
||||
public constructor(faces: ServerFace[], client: string, version: number) {
|
||||
this.faces = faces;
|
||||
this.client = client;
|
||||
this.version = version;
|
||||
}
|
||||
}
|
||||
|
||||
class ServerFace {
|
||||
public faceID: string;
|
||||
// TODO-ML: singular?
|
||||
public embeddings: number[];
|
||||
public embedding: number[];
|
||||
public detection: ServerDetection;
|
||||
public score: number;
|
||||
public blur: number;
|
||||
|
||||
public constructor(
|
||||
faceID: string,
|
||||
embeddings: number[],
|
||||
embedding: number[],
|
||||
detection: ServerDetection,
|
||||
score: number,
|
||||
blur: number,
|
||||
) {
|
||||
this.faceID = faceID;
|
||||
this.embeddings = embeddings;
|
||||
this.embedding = embedding;
|
||||
this.detection = detection;
|
||||
this.score = score;
|
||||
this.blur = blur;
|
||||
|
@ -122,6 +120,7 @@ class ServerFaceBox {
|
|||
|
||||
function LocalFileMlDataToServerFileMl(
|
||||
localFileMlData: MlFileData,
|
||||
userAgent: string,
|
||||
): ServerFileMl {
|
||||
if (localFileMlData.errorCount > 0) {
|
||||
return null;
|
||||
|
@ -140,7 +139,6 @@ function LocalFileMlDataToServerFileMl(
|
|||
const landmarks = detection.landmarks;
|
||||
const newBox = new ServerFaceBox(box.x, box.y, box.width, box.height);
|
||||
|
||||
// TODO-ML: Add client UA and version
|
||||
const newFaceObject = new ServerFace(
|
||||
faceID,
|
||||
Array.from(embedding),
|
||||
|
@ -150,7 +148,7 @@ function LocalFileMlDataToServerFileMl(
|
|||
);
|
||||
faces.push(newFaceObject);
|
||||
}
|
||||
const faceEmbeddings = new ServerFaceEmbeddings(faces, 1);
|
||||
const faceEmbeddings = new ServerFaceEmbeddings(faces, userAgent, 1);
|
||||
return new ServerFileMl(
|
||||
localFileMlData.fileId,
|
||||
faceEmbeddings,
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
import { Box, Point } from "services/face/geom";
|
||||
import type { FaceDetection } from "services/face/types";
|
||||
// TODO-ML: Do we need two separate Matrix libraries?
|
||||
// TODO-ML(LAURENS): Do we need two separate Matrix libraries?
|
||||
//
|
||||
// Keeping this in a separate file so that we can audit this. If these can be
|
||||
// expressed using ml-matrix, then we can move the code to f-index.
|
||||
// expressed using ml-matrix, then we can move this code to f-index.ts
|
||||
import {
|
||||
Matrix,
|
||||
applyToPoint,
|
||||
|
|
|
@ -8,7 +8,7 @@ export interface FaceDetection {
|
|||
}
|
||||
|
||||
export interface FaceAlignment {
|
||||
// TODO-ML: remove affine matrix as rotation, size and center
|
||||
// TODO-ML(MR): remove affine matrix as rotation, size and center
|
||||
// are simple to store and use, affine matrix adds complexity while getting crop
|
||||
affineMatrix: number[][];
|
||||
rotation: number;
|
||||
|
|
|
@ -11,11 +11,7 @@ import { EnteFile } from "types/file";
|
|||
import { isInternalUserForML } from "utils/user";
|
||||
import { indexFaces } from "../face/f-index";
|
||||
|
||||
/**
|
||||
* TODO-ML(MR): What and why.
|
||||
* Also, needs to be 1 (in sync with mobile) when we move out of beta.
|
||||
*/
|
||||
export const defaultMLVersion = 3;
|
||||
export const defaultMLVersion = 1;
|
||||
|
||||
const batchSize = 200;
|
||||
|
||||
|
@ -48,6 +44,7 @@ export async function updateMLSearchConfig(newConfig: MLSearchConfig) {
|
|||
class MLSyncContext {
|
||||
public token: string;
|
||||
public userID: number;
|
||||
public userAgent: string;
|
||||
|
||||
public localFilesMap: Map<number, EnteFile>;
|
||||
public outOfSyncFiles: EnteFile[];
|
||||
|
@ -56,9 +53,10 @@ class MLSyncContext {
|
|||
|
||||
public syncQueue: PQueue;
|
||||
|
||||
constructor(token: string, userID: number) {
|
||||
constructor(token: string, userID: number, userAgent: string) {
|
||||
this.token = token;
|
||||
this.userID = userID;
|
||||
this.userAgent = userAgent;
|
||||
|
||||
this.outOfSyncFiles = [];
|
||||
this.nSyncedFiles = 0;
|
||||
|
@ -81,12 +79,16 @@ class MachineLearningService {
|
|||
private localSyncContext: Promise<MLSyncContext>;
|
||||
private syncContext: Promise<MLSyncContext>;
|
||||
|
||||
public async sync(token: string, userID: number): Promise<boolean> {
|
||||
public async sync(
|
||||
token: string,
|
||||
userID: number,
|
||||
userAgent: string,
|
||||
): Promise<boolean> {
|
||||
if (!token) {
|
||||
throw Error("Token needed by ml service to sync file");
|
||||
}
|
||||
|
||||
const syncContext = await this.getSyncContext(token, userID);
|
||||
const syncContext = await this.getSyncContext(token, userID, userAgent);
|
||||
|
||||
await this.syncLocalFiles(syncContext);
|
||||
|
||||
|
@ -218,13 +220,17 @@ class MachineLearningService {
|
|||
// await this.disposeMLModels();
|
||||
}
|
||||
|
||||
private async getSyncContext(token: string, userID: number) {
|
||||
private async getSyncContext(
|
||||
token: string,
|
||||
userID: number,
|
||||
userAgent: string,
|
||||
) {
|
||||
if (!this.syncContext) {
|
||||
log.info("Creating syncContext");
|
||||
|
||||
// TODO-ML(MR): Keep as promise for now.
|
||||
this.syncContext = new Promise((resolve) => {
|
||||
resolve(new MLSyncContext(token, userID));
|
||||
resolve(new MLSyncContext(token, userID, userAgent));
|
||||
});
|
||||
} else {
|
||||
log.info("reusing existing syncContext");
|
||||
|
@ -232,13 +238,17 @@ class MachineLearningService {
|
|||
return this.syncContext;
|
||||
}
|
||||
|
||||
private async getLocalSyncContext(token: string, userID: number) {
|
||||
private async getLocalSyncContext(
|
||||
token: string,
|
||||
userID: number,
|
||||
userAgent: string,
|
||||
) {
|
||||
// TODO-ML(MR): This is updating the file ML version. verify.
|
||||
if (!this.localSyncContext) {
|
||||
log.info("Creating localSyncContext");
|
||||
// TODO-ML(MR):
|
||||
this.localSyncContext = new Promise((resolve) => {
|
||||
resolve(new MLSyncContext(token, userID));
|
||||
resolve(new MLSyncContext(token, userID, userAgent));
|
||||
});
|
||||
} else {
|
||||
log.info("reusing existing localSyncContext");
|
||||
|
@ -258,10 +268,15 @@ class MachineLearningService {
|
|||
public async syncLocalFile(
|
||||
token: string,
|
||||
userID: number,
|
||||
userAgent: string,
|
||||
enteFile: EnteFile,
|
||||
localFile?: globalThis.File,
|
||||
) {
|
||||
const syncContext = await this.getLocalSyncContext(token, userID);
|
||||
const syncContext = await this.getLocalSyncContext(
|
||||
token,
|
||||
userID,
|
||||
userAgent,
|
||||
);
|
||||
|
||||
try {
|
||||
await this.syncFileWithErrorHandler(
|
||||
|
@ -285,7 +300,11 @@ class MachineLearningService {
|
|||
localFile?: globalThis.File,
|
||||
) {
|
||||
try {
|
||||
const mlFileData = await this.syncFile(enteFile, localFile);
|
||||
const mlFileData = await this.syncFile(
|
||||
enteFile,
|
||||
localFile,
|
||||
syncContext.userAgent,
|
||||
);
|
||||
syncContext.nSyncedFiles += 1;
|
||||
return mlFileData;
|
||||
} catch (e) {
|
||||
|
@ -317,14 +336,18 @@ class MachineLearningService {
|
|||
}
|
||||
}
|
||||
|
||||
private async syncFile(enteFile: EnteFile, localFile?: globalThis.File) {
|
||||
private async syncFile(
|
||||
enteFile: EnteFile,
|
||||
localFile: globalThis.File | undefined,
|
||||
userAgent: string,
|
||||
) {
|
||||
const oldMlFile = await mlIDbStorage.getFile(enteFile.id);
|
||||
if (oldMlFile && oldMlFile.mlVersion) {
|
||||
return oldMlFile;
|
||||
}
|
||||
|
||||
const newMlFile = await indexFaces(enteFile, localFile);
|
||||
await putFaceEmbedding(enteFile, newMlFile);
|
||||
await putFaceEmbedding(enteFile, newMlFile, userAgent);
|
||||
await mlIDbStorage.putFile(newMlFile);
|
||||
return newMlFile;
|
||||
}
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
import { FILE_TYPE } from "@/media/file-type";
|
||||
import { ensureElectron } from "@/next/electron";
|
||||
import log from "@/next/log";
|
||||
import { ComlinkWorker } from "@/next/worker/comlink-worker";
|
||||
import { clientPackageNamePhotosDesktop } from "@ente/shared/apps/constants";
|
||||
import { eventBus, Events } from "@ente/shared/events";
|
||||
import { getToken, getUserID } from "@ente/shared/storage/localStorage/helpers";
|
||||
import debounce from "debounce";
|
||||
|
@ -227,8 +229,15 @@ class MLWorkManager {
|
|||
this.stopSyncJob();
|
||||
const token = getToken();
|
||||
const userID = getUserID();
|
||||
const userAgent = await getUserAgent();
|
||||
const mlWorker = await this.getLiveSyncWorker();
|
||||
return mlWorker.syncLocalFile(token, userID, enteFile, localFile);
|
||||
return mlWorker.syncLocalFile(
|
||||
token,
|
||||
userID,
|
||||
userAgent,
|
||||
enteFile,
|
||||
localFile,
|
||||
);
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -266,9 +275,10 @@ class MLWorkManager {
|
|||
|
||||
const token = getToken();
|
||||
const userID = getUserID();
|
||||
const userAgent = await getUserAgent();
|
||||
const jobWorkerProxy = await this.getSyncJobWorker();
|
||||
|
||||
return await jobWorkerProxy.sync(token, userID);
|
||||
return await jobWorkerProxy.sync(token, userID, userAgent);
|
||||
// this.terminateSyncJobWorker();
|
||||
// TODO: redirect/refresh to gallery in case of session_expired, stop ml sync job
|
||||
} catch (e) {
|
||||
|
@ -320,3 +330,10 @@ export function logQueueStats(queue: PQueue, name: string) {
|
|||
console.error(`queuestats: ${name}: Error, `, error),
|
||||
);
|
||||
}
|
||||
|
||||
const getUserAgent = async () => {
|
||||
const electron = ensureElectron();
|
||||
const name = clientPackageNamePhotosDesktop;
|
||||
const version = await electron.appVersion();
|
||||
return `${name}/${version}`;
|
||||
};
|
||||
|
|
|
@ -14,6 +14,8 @@ export const CLIENT_PACKAGE_NAMES = new Map([
|
|||
[APPS.ACCOUNTS, "io.ente.accounts.web"],
|
||||
]);
|
||||
|
||||
export const clientPackageNamePhotosDesktop = "io.ente.photos.desktop";
|
||||
|
||||
export const APP_TITLES = new Map([
|
||||
[APPS.ALBUMS, "Ente Albums"],
|
||||
[APPS.PHOTOS, "Ente Photos"],
|
||||
|
|
|
@ -28,8 +28,8 @@ class HTTPService {
|
|||
const responseData = response.data;
|
||||
log.error(
|
||||
`HTTP Service Error - ${JSON.stringify({
|
||||
url: config.url,
|
||||
method: config.method,
|
||||
url: config?.url,
|
||||
method: config?.method,
|
||||
xRequestId: response.headers["x-request-id"],
|
||||
httpStatus: response.status,
|
||||
errMessage: responseData.message,
|
||||
|
|
Loading…
Add table
Reference in a new issue