diff --git a/mobile/lib/services/machine_learning/face_ml/feedback/cluster_feedback.dart b/mobile/lib/services/machine_learning/face_ml/feedback/cluster_feedback.dart index e673b12ed..cfd230181 100644 --- a/mobile/lib/services/machine_learning/face_ml/feedback/cluster_feedback.dart +++ b/mobile/lib/services/machine_learning/face_ml/feedback/cluster_feedback.dart @@ -65,8 +65,13 @@ class ClusterFeedbackService { try { // Get the suggestions for the person using centroids and median + final startTime = DateTime.now(); final List<(int, double, bool)> suggestClusterIds = await _getSuggestions(person); + final findSuggestionsTime = DateTime.now(); + _logger.info( + '`_getSuggestions`: Found ${suggestClusterIds.length} suggestions in ${findSuggestionsTime.difference(startTime).inMilliseconds} ms', + ); // Get the files for the suggestions final Map> fileIdToClusterID = @@ -437,10 +442,10 @@ class ClusterFeedbackService { Future> _getSuggestions( PersonEntity p, { int sampleSize = 50, - double maxMedianDistance = 0.65, + double maxMedianDistance = 0.62, double goodMedianDistance = 0.55, double maxMeanDistance = 0.65, - double goodMeanDistance = 0.5, + double goodMeanDistance = 0.54, }) async { // Get all the cluster data final startTime = DateTime.now(); @@ -459,7 +464,7 @@ class ClusterFeedbackService { final smallestPersonClusterSize = personClusters .map((clusterID) => allClusterIdsToCountMap[clusterID] ?? 0) .reduce((value, element) => min(value, element)); - final checkSizes = [kMinimumClusterSizeSearchResult, 20, 10, 5]; + final checkSizes = [kMinimumClusterSizeSearchResult, 20, 10, 5, 1]; for (final minimumSize in checkSizes.toSet()) { if (smallestPersonClusterSize >= minimumSize) { final Map> clusterAvgBigClusters =