Use the cached address to retrieve the encoder
This commit is contained in:
parent
b2f9dd2c8b
commit
1c0ff2f10c
2 changed files with 25 additions and 20 deletions
|
@ -12,6 +12,7 @@ class ONNX extends MLFramework {
|
||||||
final _logger = Logger("ONNX");
|
final _logger = Logger("ONNX");
|
||||||
final _clipImage = OnnxImageEncoder();
|
final _clipImage = OnnxImageEncoder();
|
||||||
final _clipText = OnnxTextEncoder();
|
final _clipText = OnnxTextEncoder();
|
||||||
|
int _textEncoderAddress = 0;
|
||||||
|
|
||||||
@override
|
@override
|
||||||
String getImageModelRemotePath() {
|
String getImageModelRemotePath() {
|
||||||
|
@ -41,7 +42,8 @@ class ONNX extends MLFramework {
|
||||||
@override
|
@override
|
||||||
Future<void> loadTextModel(String path) async {
|
Future<void> loadTextModel(String path) async {
|
||||||
final startTime = DateTime.now();
|
final startTime = DateTime.now();
|
||||||
await _computer.compute(
|
await _clipText.init();
|
||||||
|
_textEncoderAddress = await _computer.compute(
|
||||||
_clipText.loadModel,
|
_clipText.loadModel,
|
||||||
param: {
|
param: {
|
||||||
"textModelPath": path,
|
"textModelPath": path,
|
||||||
|
@ -83,6 +85,7 @@ class ONNX extends MLFramework {
|
||||||
_clipText.infer,
|
_clipText.infer,
|
||||||
param: {
|
param: {
|
||||||
"text": text,
|
"text": text,
|
||||||
|
"address": _textEncoderAddress,
|
||||||
},
|
},
|
||||||
taskName: "createTextEmbedding",
|
taskName: "createTextEmbedding",
|
||||||
) as List<double>;
|
) as List<double>;
|
||||||
|
|
|
@ -2,56 +2,59 @@ import "dart:io";
|
||||||
import "dart:math";
|
import "dart:math";
|
||||||
import "dart:typed_data";
|
import "dart:typed_data";
|
||||||
|
|
||||||
|
import "package:flutter/services.dart";
|
||||||
import "package:logging/logging.dart";
|
import "package:logging/logging.dart";
|
||||||
import "package:onnxruntime/onnxruntime.dart";
|
import "package:onnxruntime/onnxruntime.dart";
|
||||||
import "package:photos/services/semantic_search/frameworks/onnx/onnx_text_tokenizer.dart";
|
import "package:photos/services/semantic_search/frameworks/onnx/onnx_text_tokenizer.dart";
|
||||||
|
|
||||||
class OnnxTextEncoder {
|
class OnnxTextEncoder {
|
||||||
static const vocabFilePath = "assets/clip/bpe_simple_vocab_16e6.txt";
|
static const vocabFilePath = "assets/models/clip/bpe_simple_vocab_16e6.txt";
|
||||||
final _logger = Logger("CLIPTextEncoder");
|
final _logger = Logger("OnnxTextEncoder");
|
||||||
OrtSessionOptions? _sessionOptions;
|
final OnnxTextTokenizer _tokenizer = OnnxTextTokenizer();
|
||||||
OrtSession? _session;
|
|
||||||
|
|
||||||
OnnxTextEncoder() {
|
OnnxTextEncoder() {
|
||||||
OrtEnv.instance.init();
|
OrtEnv.instance.init();
|
||||||
OrtEnv.instance.availableProviders().forEach((element) {
|
OrtEnv.instance.availableProviders().forEach((element) {
|
||||||
print('onnx provider=$element');
|
_logger.info('onnx provider=$element');
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Future<void> init() async {
|
||||||
|
final vocab = await rootBundle.loadString(vocabFilePath);
|
||||||
|
await _tokenizer.init(vocab);
|
||||||
|
}
|
||||||
|
|
||||||
release() {
|
release() {
|
||||||
_sessionOptions?.release();
|
|
||||||
_sessionOptions = null;
|
|
||||||
_session?.release();
|
|
||||||
_session = null;
|
|
||||||
OrtEnv.instance.release();
|
OrtEnv.instance.release();
|
||||||
}
|
}
|
||||||
|
|
||||||
Future<void> loadModel(Map args) async {
|
Future<int> loadModel(Map args) async {
|
||||||
_sessionOptions = OrtSessionOptions()
|
final sessionOptions = OrtSessionOptions()
|
||||||
..setInterOpNumThreads(1)
|
..setInterOpNumThreads(1)
|
||||||
..setIntraOpNumThreads(1)
|
..setIntraOpNumThreads(1)
|
||||||
..setSessionGraphOptimizationLevel(GraphOptimizationLevel.ortEnableAll);
|
..setSessionGraphOptimizationLevel(GraphOptimizationLevel.ortEnableAll);
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
_logger.info("Loading text model");
|
||||||
final bytes = File(args["textModelPath"]).readAsBytesSync();
|
final bytes = File(args["textModelPath"]).readAsBytesSync();
|
||||||
_session = OrtSession.fromBuffer(bytes, _sessionOptions!);
|
final session = OrtSession.fromBuffer(bytes, sessionOptions);
|
||||||
_logger.info('text model loaded');
|
_logger.info('text model loaded');
|
||||||
|
return session.address;
|
||||||
} catch (e, s) {
|
} catch (e, s) {
|
||||||
_logger.severe('text model not loaded', e, s);
|
_logger.severe('text model not loaded', e, s);
|
||||||
}
|
}
|
||||||
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
Future<List<double>> infer(Map args) async {
|
Future<List<double>> infer(Map args) async {
|
||||||
final text = args["text"];
|
final text = args["text"];
|
||||||
|
final address = args["address"] as int;
|
||||||
final runOptions = OrtRunOptions();
|
final runOptions = OrtRunOptions();
|
||||||
final tokenizer = OnnxTextTokenizer(vocabFilePath);
|
final data = List.filled(1, Int32List.fromList(_tokenizer.tokenize(text)));
|
||||||
await tokenizer.init();
|
|
||||||
final data = List.filled(1, Int32List.fromList(tokenizer.tokenize(text)));
|
|
||||||
final inputOrt = OrtValueTensor.createTensorWithDataList(data, [1, 77]);
|
final inputOrt = OrtValueTensor.createTensorWithDataList(data, [1, 77]);
|
||||||
final inputs = {'input': inputOrt};
|
final inputs = {'input': inputOrt};
|
||||||
final outputs = _session?.run(runOptions, inputs);
|
final session = OrtSession.fromAddress(address);
|
||||||
final embedding = (outputs?[0]?.value as List<List<double>>)[0];
|
final outputs = session.run(runOptions, inputs);
|
||||||
|
final embedding = (outputs[0]?.value as List<List<double>>)[0];
|
||||||
double textNormalization = 0;
|
double textNormalization = 0;
|
||||||
for (int i = 0; i < 512; i++) {
|
for (int i = 0; i < 512; i++) {
|
||||||
textNormalization += embedding[i] * embedding[i];
|
textNormalization += embedding[i] * embedding[i];
|
||||||
|
@ -63,7 +66,6 @@ class OnnxTextEncoder {
|
||||||
|
|
||||||
inputOrt.release();
|
inputOrt.release();
|
||||||
runOptions.release();
|
runOptions.release();
|
||||||
_session?.release();
|
|
||||||
return (embedding);
|
return (embedding);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Reference in a new issue