[mob][photos] Remove redundant logging
This commit is contained in:
parent
3806ee3232
commit
05a4e9f90b
1 changed files with 16 additions and 23 deletions
|
@ -456,20 +456,17 @@ class ClusterFeedbackService {
|
|||
double maxMeanDistance = 0.65,
|
||||
double goodMeanDistance = 0.54,
|
||||
}) async {
|
||||
final w = (kDebugMode ? EnteWatch('getSuggestions') : null)?..start();
|
||||
// Get all the cluster data
|
||||
final startTime = DateTime.now();
|
||||
final faceMlDb = FaceMLDataDB.instance;
|
||||
// final Map<int, List<(int, double)>> suggestions = {};
|
||||
final allClusterIdsToCountMap = await faceMlDb.clusterIdToFaceCount();
|
||||
final ignoredClusters = await faceMlDb.getPersonIgnoredClusters(p.remoteID);
|
||||
final personClusters = await faceMlDb.getPersonClusterIDs(p.remoteID);
|
||||
dev.log(
|
||||
'${p.data.name} has ${personClusters.length} existing clusters, getting all database data took ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
||||
name: "getSuggestionsUsingMedian",
|
||||
w?.log(
|
||||
'${p.data.name} has ${personClusters.length} existing clusters, getting all database data done',
|
||||
);
|
||||
|
||||
// First only do a simple check on the big clusters, if the person does not have small clusters yet
|
||||
final w = (kDebugMode ? EnteWatch('getSuggestions') : null)?..start();
|
||||
final smallestPersonClusterSize = personClusters
|
||||
.map((clusterID) => allClusterIdsToCountMap[clusterID] ?? 0)
|
||||
.reduce((value, element) => min(value, element));
|
||||
|
@ -482,10 +479,9 @@ class ClusterFeedbackService {
|
|||
ignoredClusters,
|
||||
minClusterSize: minimumSize,
|
||||
);
|
||||
dev.log(
|
||||
'computed avg for ${clusterAvgBigClusters.length} clusters, in ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
||||
w?.log(
|
||||
'Calculate avg for ${clusterAvgBigClusters.length} clusters of min size $minimumSize',
|
||||
);
|
||||
w?.log('Calculate avg for min size $minimumSize');
|
||||
final List<(int, double)> suggestionsMeanBigClusters =
|
||||
_calcSuggestionsMean(
|
||||
clusterAvgBigClusters,
|
||||
|
@ -493,7 +489,9 @@ class ClusterFeedbackService {
|
|||
ignoredClusters,
|
||||
goodMeanDistance,
|
||||
);
|
||||
w?.log('Calculate suggestions using mean for min size $minimumSize');
|
||||
w?.log(
|
||||
'Calculate suggestions using mean for ${clusterAvgBigClusters.length} clusters of min size $minimumSize',
|
||||
);
|
||||
if (suggestionsMeanBigClusters.isNotEmpty) {
|
||||
return suggestionsMeanBigClusters
|
||||
.map((e) => (e.$1, e.$2, true))
|
||||
|
@ -508,8 +506,8 @@ class ClusterFeedbackService {
|
|||
allClusterIdsToCountMap,
|
||||
ignoredClusters,
|
||||
);
|
||||
dev.log(
|
||||
'computed avg for ${clusterAvg.length} clusters, in ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
||||
w?.log(
|
||||
'computed avg for ${clusterAvg.length} clusters,',
|
||||
);
|
||||
|
||||
// Find the other cluster candidates based on the mean
|
||||
|
@ -649,6 +647,7 @@ class ClusterFeedbackService {
|
|||
int maxClusterInCurrentRun = 500,
|
||||
int maxEmbeddingToRead = 10000,
|
||||
}) async {
|
||||
final w = (kDebugMode ? EnteWatch('_getUpdateClusterAvg') : null)?..start();
|
||||
final startTime = DateTime.now();
|
||||
final faceMlDb = FaceMLDataDB.instance;
|
||||
_logger.info(
|
||||
|
@ -661,8 +660,8 @@ class ClusterFeedbackService {
|
|||
|
||||
final Map<int, Vector> clusterAvg = {};
|
||||
|
||||
dev.log(
|
||||
'getUpdateClusterAvg database call for getAllClusterSummary took ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
||||
w?.log(
|
||||
'getUpdateClusterAvg database call for getAllClusterSummary',
|
||||
);
|
||||
|
||||
final allClusterIds = allClusterIdsToCountMap.keys.toSet();
|
||||
|
@ -687,8 +686,8 @@ class ClusterFeedbackService {
|
|||
smallerClustersCnt++;
|
||||
}
|
||||
}
|
||||
dev.log(
|
||||
'serialization of embeddings took ${DateTime.now().difference(serializationTime).inMilliseconds} ms',
|
||||
w?.log(
|
||||
'serialization of embeddings',
|
||||
);
|
||||
_logger.info(
|
||||
'Ignored $ignoredClustersCnt clusters, already updated $alreadyUpdatedClustersCnt clusters, $smallerClustersCnt clusters are smaller than $minClusterSize',
|
||||
|
@ -708,12 +707,7 @@ class ClusterFeedbackService {
|
|||
allClusterIdsToCountMap[b]!.compareTo(allClusterIdsToCountMap[a]!),
|
||||
);
|
||||
int indexedInCurrentRun = 0;
|
||||
final EnteWatch? w = kDebugMode ? EnteWatch("computeAvg") : null;
|
||||
w?.start();
|
||||
|
||||
w?.log(
|
||||
'reading embeddings for $maxClusterInCurrentRun or ${sortedClusterIDs.length} clusters',
|
||||
);
|
||||
w?.reset();
|
||||
|
||||
int currentPendingRead = 0;
|
||||
final List<int> clusterIdsToRead = [];
|
||||
|
@ -790,7 +784,6 @@ class ClusterFeedbackService {
|
|||
final Map<int, List<(int, double)>> suggestions = {};
|
||||
int suggestionCount = 0;
|
||||
final w = (kDebugMode ? EnteWatch('getSuggestions') : null)?..start();
|
||||
w?.log('converted avg to vectors for ${clusterAvg.length} averages');
|
||||
for (final otherClusterID in clusterAvg.keys) {
|
||||
// ignore the cluster that belong to the person or is ignored
|
||||
if (personClusters.contains(otherClusterID) ||
|
||||
|
|
Loading…
Add table
Reference in a new issue